
pmid: 25646609
Methods used to understand the function of a gene/protein are one of the hallmarks of modern molecular genetics. The ability to genetically manipulate bacteria has become a fundamental tool in studying these organisms and while basic cloning has become a routine task in molecular biology laboratories, generating directed mutations can be a daunting task. This chapter describes the method of allelic exchange in Staphylococcus aureus using temperature-sensitive plasmids that have successfully produced a variety of chromosomal mutations, including in-frame deletions, insertion of antibiotic-resistance cassettes, and even single-nucleotide point mutations.
Recombination, Genetic, Mutagenesis, Insertional, Staphylococcus aureus, Humans, Drug Resistance, Microbial, Cloning, Molecular, Molecular Biology, Alleles, Plasmids
Recombination, Genetic, Mutagenesis, Insertional, Staphylococcus aureus, Humans, Drug Resistance, Microbial, Cloning, Molecular, Molecular Biology, Alleles, Plasmids
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
