Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Increasing memory bandwidth for vector computations

Authors: William A. Wulf; Steven A. Moyer; Sally A. McKee; Charles Young Hitchcock;

Increasing memory bandwidth for vector computations

Abstract

Memory bandwidth is rapidly becoming the performance bottleneck in the application of high performance micro- processors to vector-like algorithms, including the "Grand Challenge" scientific problems. Caching is not the sole solution for these applications due to the poor temporal and spatial locality of their data accesses. Moreover, the nature of memories themselves has changed. Achieving greater bandwidth requires exploiting the characteristics of memory components "on the other side of the cache" - they should not be treated as uniform access-time RAM. This paper describes the use of hardware-assisted access ordering, a technique that combines compile-time detection of memory access patterns with a memory subsystem that decouples the order of requests generated by the processor from that issued to the memory system. This decoupling permits the requests to be issued in an order that optimizes use of the memory system. Our simulations show significant speedup on important scientific ker- nels.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Top 1%
Average
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?