
Parser combinators enable the construction of recursive descent parsers in a very clear and simple way. Unfortunately, the resulting parsers have a polynomial complexity and are far too slow for realistic inputs. We show how the speed of these parsers can be improved by one order of magnitude using continuations. These continuations prevents the creation of intermediate data structures. Furthermore, by using an exclusive or-combinator instead of the ordinary or-combinator the complexity for deterministic parsers can be reduced from polynomial to linear. The combination of both improvements turn parser combinators from a beautiful toy to a practically applicable tool which can be used for real world applications. The improved parser combinators remain very easy to use and are still able to handle ambiguous grammars.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
