
handle: 11245/1.165307
Segmentation based on color, instead of intensity only, pro- vides an easier distinction between materials, on the condition that ro- bustness against irrelevant parameters is achieved, such as illumination source, shadows, geometry and camera sensitivities. Modeling the phys- ical process of the image formation provides insight into the effect of different parameters on object color.In this paper, a color differential geometry approach is used to detect material edges, invariant with respect to illumination color and imaging conditions. The performance of the color invariants is demonstrated by some real-world examples, showing the invariants to be successful in discounting shadow edges and illumination color.
000, 004
000, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
