Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://link.springe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.springer.com/cont...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Designs Codes and Cryptography
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://doi.org/10.1007/3-540-...
Part of book or chapter of book . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Universal hashing and authentication codes

Authors: Douglas R. Stinson;

Universal hashing and authentication codes

Abstract

In this paper (for a preliminary version see [Lect. Notes Comput. Sci. 576, 74-85 (1992; Zbl 0789.68050)]) the author studies the applications of universal hashing to the construction of unconditionally secure authentication codes without secrecy. He generalizes the construction given by \textit{M. N. Wegman} and \textit{J. L. Carter} [J. Comput. Syst. Sci. 22, 265-279 (1981; Zbl 0461.68074)], which is useful when the number of authenticators is exponentially small compared to the number of possible source states (plaintext messages), by formally defining some new classes of hash functions. He presents two lower bounds on the size of certain universal classes of hash functions, gives both direct and recursive constructions for universal classes of hash functions and discusses the implications of this theory to the construction of authentication codes. The presented method of universal hashing to construct authentication codes is used by \textit{J. Bierbrauer}, \textit{T. Johansson}, \textit{G. Kobatianskij} and \textit{B. Smeets} [Lect. Notes Comput. Sci. 773, 331-342 (1994)]. In [J. Combinatorial Design 2, 161-166 (1994)] \textit{Tran Van Trung} gives a design-theoretic characterization of those classes of hash functions that meet one of the lower bounds with equality.

Related Organizations
Keywords

Data encryption (aspects in computer science), hash functions, Cryptography, authentication codes, universal hashing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    266
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
266
Top 1%
Top 1%
Top 10%
bronze