
We study the number of steps required to reach a pure Nash Equilibrium in a load balancing scenario where each job behaves selfishly and attempts to migrate to a machine which will minimize its cost. We consider a variety of load balancing models, including identical, restricted, related and unrelated machines. Our results have a crucial dependence on the weights assigned to jobs. We consider arbitrary weights, integer weights, K distinct weights and identical (unit) weights. We look both at an arbitrary schedule (where the only restriction is that a job migrates to a machine which lowers its cost) and specific efficient schedulers (such as allowing the largest weight job to move first).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 67 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
