
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 16999224
Major advances have been made over the last decade towards the elucidation of the molecular mechanisms involved in the endothelium-dependent regulation of vascular tone and blood flow. While the primary endothelium-derived vasodilator autacoid is nitric oxide, it is clear that epoxyeicosatrienoic acids and other endothelium-derived hyperpolarising factors, as well as endothelin-1 and reactive oxygen species, play a significant role in the regulation of vascular tone and gene expression. This review is intended as an overview of the signalling mechanisms that link haemodynamic stimuli (such as shear stress and cyclic stretch) and endothelial cell perturbation to the activation of enzymes generating vasoactive autacoids.
Focal Adhesions, Nitric Oxide Synthase Type III, Kallikrein-Kinin System, Arteries, Nitric Oxide, Mechanotransduction, Cellular, Muscle, Smooth, Vascular, Biological Factors, Regional Blood Flow, Blood Circulation, Animals, Humans, Receptors, Growth Factor, Endothelium, Vascular
Focal Adhesions, Nitric Oxide Synthase Type III, Kallikrein-Kinin System, Arteries, Nitric Oxide, Mechanotransduction, Cellular, Muscle, Smooth, Vascular, Biological Factors, Regional Blood Flow, Blood Circulation, Animals, Humans, Receptors, Growth Factor, Endothelium, Vascular
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 80 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
