
Minimal perfect hashing provides a mapping between a set of n unique words and n consecutive numbers. When implemented with minimal finite-state automata, the mapping is determined only by the (usually alphabetical) order of words in the set. Addition of new words would change the order of words already in the language of the automaton, changing the whole mapping, and making it useless in many domains. Therefore, we call it static. Dynamic minimal perfect hashing assigns consecutive numbers to consecutive words as they are added to the language of the automaton. Dynamic perfect hashing is important in many domains, including text retrieval and databases. We investigate three methods for its implementation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
