Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Privileged Structures in GPCRs

Authors: R P, Bywater;

Privileged Structures in GPCRs

Abstract

Certain kinds of ligand substructures recur frequently in pharmacologically successful synthetic compounds. For this reason they are called privileged structures. In seeking an explanation for this phenomenon, it is observed that the privileged structure represents a generic substructure that matches commonly recurring conserved structural motifs in the target proteins, which may otherwise be quite diverse in sequence and function. Using sequence-handling tools, it is possible to identify which other receptors may respond to the ligand, as dictated on the one hand by the nature of the privileged substructure itself or by the rest of the ligand in which a more specific message resides. It is suggested that privileged structures interact with the partially exposed receptor machinery responsible for the switch between the active and inactive states. Depending on how they have been designed to interact, one can predispose these substructures to favour either one state or the other; thus privileged structures can be used to create either agonists or antagonists. In terms of the mechanism of recognition, the region that the privileged structures bind to are rich in aromatic residues, which explains the prevalence of aromatic groups and atoms such as sulphur or halogens in many of the ligands. Finally, the approach described here can be used to design drugs for orphan receptors whose function has not yet been established experimentally.

Related Organizations
Keywords

Structure-Activity Relationship, Molecular Structure, Sequence Homology, Amino Acid, Molecular Sequence Data, Animals, Humans, Amino Acid Sequence, Ligands, Receptors, G-Protein-Coupled

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!