Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1007/164_20...
Part of book or chapter of book . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.springer.com/cont...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Epigenome in Atherosclerosis

Authors: Francesco Paneni; Sarah Costantino;

The Epigenome in Atherosclerosis

Abstract

AbstractEmerging evidence suggests the growing importance of “nongenetic factors” in the pathogenesis of atherosclerotic vascular disease. Indeed, the inherited genome determines only part of the risk profile as genomic approaches do not take into account additional layers of biological regulation by “epi”-genetic changes. Epigenetic modifications are defined as plastic chemical changes of DNA/histone complexes which critically affect gene activity without altering the DNA sequence. These modifications include DNA methylation, histone posttranslational modifications, and non-coding RNAs and have the ability to modulate gene expression at both transcriptional and posttranscriptional level. Notably, epigenetic signals are mainly induced by environmental factors (i.e., pollution, smoking, noise) and, once acquired, may be transmitted to the offspring. The inheritance of adverse epigenetic changes may lead to premature deregulation of pathways involved in vascular damage and endothelial dysfunction. Here, we describe the emerging role of epigenetic modifications as fine-tuners of gene transcription in atherosclerosis. Specifically, the following aspects are described in detail: (1) discovery and impact of the epigenome in cardiovascular disease, (2) the epigenetic landscape in atherosclerosis; (3) inheritance of epigenetic signals and premature vascular disease; (4) epigenetic control of lipid metabolism, vascular oxidative stress, inflammation, autophagy, and apoptosis; (5) epigenetic biomarkers in patients with atherosclerosis; (6) novel therapeutic strategies to modulate epigenetic marks. Understanding the individual epigenetic profile may pave the way for new approaches to determine cardiovascular risk and to develop personalized therapies to treat atherosclerosis and its complications.

Related Organizations
Keywords

Epigenome, Genome, Humans, DNA Methylation, Atherosclerosis, Epigenesis, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
hybrid