
doi: 10.1007/164_2020_390
pmid: 33140223
Generation of nitric oxide (NO) by the nitric oxide synthase (NOS) enzymes plays multiple signalling roles in every organ system, with crucial roles in the cardiovascular system, mediated by endothelial nitric oxide synthase (eNOS, encoded by NOS3) and neuronal nitric oxide synthase (nNOS, encoded by NOS1) in regulation of blood pressure, flow, oxygen delivery and cardiac function. Loss of normal NO-mediated functions in cardiovascular disease state is associated with changes in nitroso-redox signalling that are not dependent solely upon altered NO generation, but increased generation of reactive oxygen species (ROS). The NOS enzymes can also generate ROS, in a catalytic mode whereby the generation of NO from L-arginine is 'uncoupled' from the reduction of molecular oxygen. NOS uncoupling is determined by several factors, including the availability and oxidation state of the required NOS cofactor, tetrahydrobiopterin (BH4). The duality of NOS functions as enzymes that generate both NO and ROS under different regulatory states has emerged as an important pathophysiologic mechanism, and is a potential therapeutic target, via agents that can maintain or restore NOS coupling, for example via effects on BH4 availability.
Biopterins, Nitric Oxide Synthase Type III, Humans, Nitric Oxide Synthase, Nitric Oxide, Reactive Oxygen Species
Biopterins, Nitric Oxide Synthase Type III, Humans, Nitric Oxide Synthase, Nitric Oxide, Reactive Oxygen Species
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
