Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/164_20...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Posttranslational Modification of Sodium Channels

Authors: Zifan, Pei; Yanling, Pan; Theodore R, Cummins;

Posttranslational Modification of Sodium Channels

Abstract

Voltage-gated sodium channels (VGSCs) are critical determinants of excitability. The properties of VGSCs are thought to be tightly controlled. However, VGSCs are also subjected to extensive modifications. Multiple posttranslational modifications that covalently modify VGSCs in neurons and muscle have been identified. These include, but are not limited to, phosphorylation, ubiquitination, palmitoylation, nitrosylation, glycosylation, and SUMOylation. Posttranslational modifications of VGSCs can have profound impact on cellular excitability, contributing to normal and abnormal physiology. Despite four decades of research, the complexity of VGSC modulation is still being determined. While some modifications have similar effects on the various VGSC isoforms, others have isoform-specific interactions. In addition, while much has been learned about how individual modifications can impact VGSC function, there is still more to be learned about how different modifications can interact. Here we review what is known about VGSC posttranslational modifications with a focus on the breadth and complexity of the regulatory mechanisms that impact VGSC properties.

Keywords

Glycosylation, Ubiquitination, Animals, Humans, Sumoylation, Voltage-Gated Sodium Channels, Phosphorylation, Reactive Oxygen Species, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!