
Genomic instability is a characteristic of most human cancers and plays critical roles in both cancer development and progression. There are various forms of genomic instability arising from many different pathways, such as DNA damage from endogenous and exogenous sources, centrosome amplification, telomere damage, and epigenetic modifications. DNA-repair pathways can enable tumor cells to survive DNA damage. The failure to respond to DNA damage is a characteristic associated with genomic instability. Understanding of genomic instability in cancer is still very limited, but the further understanding of the molecular mechanisms through which the DNA damage response (DDR) operates, in combination with the elucidation of the genetic interactions between DDR pathways and other cell pathways, will provide therapeutic opportunities for the personalized medicine of cancer.
DNA Repair, Neoplasms, Cancer; DNA damage; Instability; Resistance; Humans; Neoplasms; Precision Medicine; DNA Damage; DNA Repair; Genomic Instability, Humans, Precision Medicine, Genomic Instability, DNA Damage
DNA Repair, Neoplasms, Cancer; DNA damage; Instability; Resistance; Humans; Neoplasms; Precision Medicine; DNA Damage; DNA Repair; Genomic Instability, Humans, Precision Medicine, Genomic Instability, DNA Damage
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
