Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chitosan and Thiolated Chitosan

Authors: Federica Sarti; Andreas Bernkop-Schnürch;

Chitosan and Thiolated Chitosan

Abstract

Thiolated chitosans constitute an integral part of designated “thiomers”, which are thiolated polymers widely investigated for non-invasive drug delivery. In brief, thiomers display thiol-group-bearing ligands on their polymer backbone. Through thiol/disulfide exchange reactions and/or a simple oxidation process, disulfide bonds are formed between such polymers and the cysteine-rich subdomains of mucus glycoproteins, thus building up the mucus gel layer. Most chemical modifications of chitosan are performed at the free amino groups of the glucosamine units. So far, the alkyl thiomers chitosan–cysteine, chitosan–thiobutylamidine, chitosan–thioglycolic acid, chitosan–N-acetylcysteine, and chitosan–thioethylamidine and the aryl thiomers chitosan–6-mercaptonicotinic acid and chitosan–4-mercaptobenzoic acid have been generated. Due to the immobilization of thiol groups on the chitosan backbone, its mucoadhesive, permeation enhancing, in situ gelling, efflux pump inhibitory, and controlled drug release properties are improved. The great benefits of this new generation of chitosans in comparison to the corresponding unmodified polymers has been verified via numerous in vivo studies on various mucosal membranes. A proof of concept for oral, nasal and buccal drug delivery is provided. This chapter includes an overview of the mechanism of adhesion and the design of thiomers as well as of delivery systems comprising thiolated chitosans and their in vivo performance.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!