
The ability of polymers to respond to external stimuli is of high scientific and technological significance. In the last few years, research activities have been intensified substantially, exploring whether stimuli-sensitive polymers can be designed that move actively. In this review actively-moving materials were classified according to the underlying mechanisms enabling the shape changes: shape-memory polymers and shape-changing polymers/shape-changing gels were identified. The application spectra of these materials as well as the current developments were elucidated and general molecular design principles presented. When applicable, a further distinction according to the applied stimulus was made.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 120 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
