
AbstractWe show an O(1.344n)=O(20.427n) algorithm for edge-coloring an n-vertex graph using three colors. Our algorithm uses polynomial space. This improves over the previous O(2n/2) algorithm of Beigel and Eppstein [R. Beigel, D. Eppstein, 3-coloring in time O(1.3289n), J. Algorithms 54 (2) (2005) 168–204.]. We apply a very natural approach of generating inclusion–maximal matchings of the graph. The time complexity of our algorithm is estimated using the “measure and conquer” technique.
Algorithm, Exponential-time, Edge-coloring, Measure and conquer, Theoretical Computer Science, Computer Science(all)
Algorithm, Exponential-time, Edge-coloring, Measure and conquer, Theoretical Computer Science, Computer Science(all)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
