
doi: 10.1007/11787006_13
In (Micciancio, FOCS 2002), it was proved that solving the generalized compact knapsack problem on the average is as hard as solving certain worst-case problems for cyclic lattices. This result immediately yielded very efficient one-way functions whose security was based on worst-case hardness assumptions. In this work, we show that, while the function proposed by Micciancio is not collision resistant, it can be easily modified to achieve collision resistance under essentially the same complexity assumptions on cyclic lattices. Our modified function is obtained as a special case of a more general result, which yields efficient collision-resistant hash functions based on the worst-case hardness of various new problems. These include new problems from algebraic number theory as well as classic lattice problems (e.g., the shortest vector problem) over ideal lattices, a class of lattices that includes cyclic lattices as a special case
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 217 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
