
doi: 10.1007/11757283_3
The rapid growth in hardware complexity has lead to a need for formal verification of hardware designs to prevent bugs from entering the final silicon. Model-checking [3] is by far the most popular technique for automatically verifying properties of designs. In model-checking, a model of a design is exhaustively checked against a property, often specified in some temporal logic. Today, all major hardware companies use model-checkers in order to reduce the number of bugs in their designs. Most model-checking techniques are state-based. This means that some kind of representation of all reachable states of the design is used when checking that the temporal properties are fulfilled. One popular way of representing the set of reachable states of a design is by using Binary Decision Diagrams (BDDs) [2]. A BDD is a canonical way of representing a boolean formula over a fixed set of variables. When the set of reachable states of a design can be calculated using BDDs, state-based model-checking techniques work very well. However, for some types of designs, it is very hard to represent all reachable states by BDDs; they grow exponentially in size and lead to a BDD blow-up.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
