
doi: 10.1007/11580850_8
Cryptographic protocols are useful for trust engineering in distributed transactions. Transactions require specific degrees of confidentiality and agreement between the principals engaging in it. Moreover, trust management assertions may be attached to protocol actions, constraining the behavior of a principal to be compatible with its own trust policy. We embody these ideas in a cryptographic protocol programming language cppl at the Dolev-Yao level of abstraction. A strand space semantics for cppl shaped our compiler development, and allows a protocol designer to prove that a protocol is sound.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
