
doi: 10.1007/11562931_17
In [22], a new Hybrid Probabilistic Logic Programs framework has been proposed, and a new semantics has been developed to enable encoding and reasoning about real-world applications. In this paper, the language of Hybrid Probabilistic Logic Programs framework of [22] is extended to allow non-monotonic negation, and two alternative semantics are defined: stable probabilistic model semantics and probabilistic well-founded semantics. Stable probabilistic model semantics and probabilistic well-founded semantics generalize stable model semantics and well-founded semantics of traditional normal logic programs, and they reduce to the semantics of original Hybrid Probabilistic Logic programs framework of [22] for programs without negation. It is the first time that two different semantics for Hybrid Probabilistic Programs with non-monotonic negation as well as their relationships are described. This development provides a foundational ground for developing computational methods for computing the proposed semantics. Furthermore, it makes it clearer how to characterize non-monotonic negation in probabilistic logic programming frameworks for commonsense reasoning.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
