
doi: 10.1007/11540007_7
Supervised local tangent space alignment is proposed for data classification in this paper. It is an extension of local tangent space alignment, for short, LTSA, from unsupervised to supervised learning. Supervised LTSA is a supervised dimension reduction method. It make use of the class membership of each data to be trained in the case of multiple classes, to improve the quality of classification. Furthermore we present how to determine the related parameters for classification and apply this method to a number of artificial and realistic data. Experimental results show that supervised LTSA is superior for classification to other popular methods of dimension reduction when combined with simple classifiers such as the k-nearest neighbor classifier.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
