Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Optimal-Location Query

Authors: Tian Xia; Donghui Zhang; Yang Du;

The Optimal-Location Query

Abstract

We propose and solve the optimal-location query in spatial databases. Given a set S of sites, a set O of weighted objects, and a spatial region Q, the optimal-location query returns a location in Q with maximum influence. Here the influence of a location l is the total weight of its RNNs, i.e. the total weight of objects in O that are closer to l than to any site in S. This new query has practical applications, but is very challenging to solve. Existing work on computing RNNs assumes a single query location, and thus cannot be used to compute optimal locations. The reason is that there are infinite candidate locations in Q. If we check a finite set of candidate locations, the result can be inaccurate, i.e. the revealed location may not have maximum influence. This paper proposes three methods that accurately compute optimal locations. The first method uses a standard R*-tree. To compute an optimal location, the method retrieves certain objects from the R*-tree and sends them as a stream to a plane-sweep algorithm, which uses a new data structure called the aSB-tree to ensure query efficiency. The second method is based on a new index structure called the OL-tree, which novelly extends the k-d-B-tree to store segmented rectangular records. The OL-tree is only of theoretical usage for it is not space efficient. The most practical approach is based on a new index structure called the Virtual OL-tree. These methods are theoretically and experimentally evaluated.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!