
doi: 10.1007/11535218_32
We present an improved bound on the advantage of any q-query adversary at distinguishing between the CBC MAC over a random n-bit permutation and a random function outputting n bits. The result assumes that no message queried is a prefix of any other, as is the case when all messages to be MACed have the same length. We go on to give an improved analysis of the encrypted CBC MAC, where there is no restriction on queried messages. Letting m be the block length of the longest query, our bounds are about mq2/2n for the basic CBC MAC and mo(1)q2/2n for the encrypted CBC MAC, improving prior bounds of m2q2/2n. The new bounds translate into improved guarantees on the probability of forging these MACs.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
