Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring Simple Grid Polygons

Authors: Rolf Klein; Elmar Langetepe; Tom Kamphans; Christian Icking;

Exploring Simple Grid Polygons

Abstract

We investigate the online exploration problem of a short-sighted mobile robot moving in an unknown cellular room without obstacles. The robot has a very limited sensor; it can determine only which of the four cells adjacent to its current position are free and which are blocked, i.e., unaccessible for the robot. Therefore, the robot must enter a cell in order to explore it. The robot has to visit each cell and to return to the start. Our interest is in a short exploration tour, i.e., in keeping the number of multiple cell visits small. For abitrary environments without holes we provide a strategy producing tours of length $S \leq C + \frac{1}{2} E -- 3$, where C denotes the number of cells – the area – , and E denotes the number of boundary edges – the perimeter – of the given environment. Further, we show that our strategy is competitive with a factor of $\frac43$, and give a lower bound of $\frac76$ for our problem. This leaves a gap of only $\frac16$ between the lower and the upper bound.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!