Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Ensemble Confidence Estimates Posterior Probability

Authors: Michael Muhlbaier; Apostolos Topalis; Robi Polikar;

Ensemble Confidence Estimates Posterior Probability

Abstract

We have previously introduced the Learn++ algorithm that provides surprisingly promising performance for incremental learning as well as data fusion applications. In this contribution we show that the algorithm can also be used to estimate the posterior probability, or the confidence of its decision on each test instance. On three increasingly difficult tests that are specifically designed to compare posterior probability estimates of the algorithm to that of the optimal Bayes classifier, we have observed that estimated posterior probability approaches to that of the Bayes classifier as the number of classifiers in the ensemble increase. This satisfying and intuitively expected outcome shows that ensemble systems can also be used to estimate confidence of their output.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!