
doi: 10.1007/10_2013_191
pmid: 23615879
: The most important parasitic diseases, malaria, leishmaniasis, trypanosomiasis, and schistosomiasis, are a great burden to mankind, threatening the life of millions of people worldwide and mostly affecting the poorest. Because drug resistance is increasing and vaccines are rarely available, novel chemotherapeutic compounds are necessary in order to treat these devastating diseases. Insects serve as vectors of many human parasitic diseases and have been shown to express a huge variety of antimicrobial peptides (AMPs). Therefore, research activity on insect-derived AMPs has been increasing in the last 40 years. This chapter summarizes the current state of research on the possible role of AMPs as potential chemotherapeutic compounds against human parasitic diseases. As a representative antimicrobial peptide with antiparasitic activity, the structure of insect defensin A is shown [PDB accession code: 1ICA]. The molecule is surrounded by schematic representations of the human pathogenic parasites Plasmodium, Leishmania and Trypanosoma.
Insecta, Antiparasitic Agents, Trypanosomiasis, Humans, Peptides, Leishmaniasis, Malaria
Insecta, Antiparasitic Agents, Trypanosomiasis, Humans, Peptides, Leishmaniasis, Malaria
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
