
doi: 10.1007/10719839_16
The chromatic index problem – finding the minimum number of colours required for colouring the edges of a graph – is still unsolved for indifference graphs, whose vertices can be linearly ordered so that the vertices contained in the same maximal clique are consecutive in this order. Two adjacent vertices are twins if they belong to the same maximal cliques. A graph is reduced if it contains no pair of twin vertices. A graph is overfull if the total number of edges is greater than the product of the maximum degree by \(\lfloor{}n/2\rfloor\), where n is the number of vertices. We give a structural characterization for neighbourhood-overfull indifference graphs proving that a reduced indifference graph cannot be neighbourhood-overfull. We show that the chromatic index for all reduced indifference graphs is the maximum degree.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
