<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Chalcolithic man was clearly aware of the many useful features of copper that made it preferable to stone or organic materials for some specialized applications. Among these properties were its elasticity and particularly plasticity, which allowed sheets or chunks of copper to be given useful shapes. Chalcolithic man also exploited the fact that copper hardens during hammering, that is, as a result of plastic deformation. Last but not least, molten copper can be cast into molds to obtain more intricate shapes. On the negative side, surface oxidation and gases trapped during melting and casting which may form porosity were probably of some concern to Chalcolithic man. More importantly, however, cast copper is quite soft and thus could hardly be used for strong weapons or tools. Eventually, the time had come for a change through innovation. A new material had to be found. This material was bronze; see Fig. 4.1.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |