
handle: 11104/0125474
The important task of generating the minimum number of sequential triangle strips (tristrips) for a given triangulated surface model is motived by applications in computer graphics. This hard combinatorial optimization problem is reduced to the minimum energy problem in Hopfield nets by a linear-size construction. The Hopfield network powered by simulated annealing (i.e. Boltzmann machine) which is implemented in a program HTGEN can be used for computing the semi-optimal stripifications. Practical experiments confirm that one can obtain much better results using HTGEN than by a leading stripification program FTSG although the running time of simulated annealing grows rapidly near the global optimum.
minimum energy, combinatorial optimization, Hopfield network, simulated annealing, sequential triangle strip
minimum energy, combinatorial optimization, Hopfield network, simulated annealing, sequential triangle strip
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
