
pmid: 11531402
Reverse genetics of negative-sense RNA viruses, which enables one to generate virus entirely from cloned cDNA, has progressed rapidly over the past decade. However, despite the relative ease with which nonsegmented negative-sense RNA viruses can now be produced from plasmids, the ability to generate viruses with segmented genomes has lagged considerably, largely because of the inherent technical difficulties in providing all viral RNAs and proteins from cloned cDNA. A breakthrough in reverse genetics technology in the influenza virus field came in 1999, when we (Neumann et al., 1999, Proc. Natl. Acad. Sci. USA 96, 9345-9350) and others (Fodor et al., 1999, J. Virol. 73, 9679-9682) exploited a new approach to viral RNA production. In this review, we discuss the background for this advance, the systems that are now available for the generation of influenza viruses, and the implications of these developments for the future of virus research.
Virology, Humans, RNA, Viral, Genetic Engineering, Orthomyxoviridae, Plasmids
Virology, Humans, RNA, Viral, Genetic Engineering, Orthomyxoviridae, Plasmids
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 58 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
