Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Toxicology and Appli...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Toxicology and Applied Pharmacology
Article . 1993 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Free Radicals in Toxicology

Authors: Steven D. Aust; Ronald P. Mason; Colin F. Chignell; Balaraman Kalyanaraman; Tammy M. Bray;

Free Radicals in Toxicology

Abstract

Free radicals are recognized more and more frequently as being involved in the mechanism of toxicity of chemicals. In some cases, the organic radicals are involved, but often oxygen radicals result from redox cycling chemicals. Free radicals are usually very reactive, which, in addition to causing toxicities, can make them difficult to detect. Electron spin resonance (ESR) techniques are frequently used, but generally the radicals must be trapped to form a more stable radical for detection. Quantitation is therefore often very difficult. Free radicals of many xenobiotics are formed during their metabolism by enzymes such as cytochrome P450 or peroxidases. In some cases, chemicals can redox cycle using reductases, such as cytochrome P450 reductase, which can catalyze one-electron reductions. Some redox cycling xenobiotics reduce molecular oxygen by one electron to generate superoxide. Superoxide can cause toxicities against which superoxide dismutase is protective. However, in the presence of transition metals such as iron, superoxide can generate the very reactive hydroxyl radical by the iron-catalyzed Haber-Weiss reaction. Iron is therefore normally tightly controlled by transport and storage proteins. Chemicals that can release iron from these proteins can be very toxic, causing lipid, protein, and nucleic acid oxidation. The oxidation of these species, such as a low-density lipoprotein, is generally protected by a complex antioxidant system involving glutathione and glutathione peroxidase, vitamin E, ascorbic acid, etc.

Related Organizations
Keywords

Free Radicals, Iron, Toxicology, Skatole, Xenobiotics, Ferritins, Animals, Humans, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    176
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
176
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?