
Endothelial dysfunction has been shown in a wide range of vascular disorders including atherosclerosis and related diseases. Here, we examine and address the complex relationship among nitric oxide (NO)-mediated pathways and atherogenesis. In view of the numerous pathophysiological actions of NO, abnormalities could potentially occur at many sites: (a) impairment of membrane receptors in the arterial wall that interact with agonists or physiological stimuli capable of generating NO; (b) reduced concentrations or impaired utilization of l-arginine; (c) reduction in concentration or activity both of inducible and endothelial NO synthase; (d) impaired release of NO from the atherosclerotic damaged endothelium; (e) impaired NO diffusion from endothelium to vascular smooth muscle cells followed by decreased sensitivity to its vasodilator action; (f) local enhanced degradation of NO by increased generation of free radicals and/or oxidation-sensitive mechanisms; and (g) impaired interaction of NO with guanylate cyclase and consequent limitation of cyclic GMP production. Therefore, one target for new drugs should be the preservation or restoration of NO-mediated signaling pathways in arteries. Such novel therapeutic strategies may include administration of l-arginine/antioxidants and gene-transfer approaches.
Arteriosclerosis, Hypercholesterolemia, Humans, Endothelium, Vascular, Arginine, Nitric Oxide, Antioxidants
Arteriosclerosis, Hypercholesterolemia, Humans, Endothelium, Vascular, Arginine, Nitric Oxide, Antioxidants
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 356 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
