
pmid: 11421617
Vascular disruption secondary to fracture creates a hypoxic gradient of injury wherein the oxygen tension at the center of the wound is very low. In vivo this hypoxic microenvironment stimulates the expression of a variety of cytokines from inflammatory cells, fibroblasts, endothelial cells, and osteoblasts. In order to begin to dissect this complex system, we have examined the effects of hypoxia on isolated osteoblast gene expression in vitro. Understanding gene expression in this system may facilitate the development of targeted therapeutic modalities designed to accelerate fracture repair and reduce complications. Using an established model of in vitro hypoxia, we have analyzed the expression of genes involved in bone matrix production and turnover. Subconfluent neonatal rat calvarial osteoblasts were exposed to hypoxia (pO(2) = 35-40 mm Hg) and total cellular RNA was collected at 0, 3, 6, 24, and 48 h. Northern analysis was used to analyze the expression patterns of (1) transforming growth factors (TGFs)-beta1, -beta2, and -beta3 and their type I receptor; (2) collagens I and III; and (3) tissue inhibitor of metalloproteinase-1. We have demonstrated a marked elevation of TGF-beta1 gene expression within 3 h of hypoxia. Although neither TGF-beta2 nor TGF-beta3 expression was affected by hypoxia, the TGF-beta type I receptor was substantially upregulated within 6 h. In addition, extracellular matrix scaffolding molecules (collagens I and III) were markedly, but differentially, upregulated. Finally, we have demonstrated that the expression of an inhibitor of extracellular matrix turnover, the tissue inhibitor of metalloproteinase-1, was strikingly decreased in response to hypoxia. These results imply that hypoxia can affect osseous healing by altering the expression of cytokines, bone-specific extracellular matrix molecules, and their regulators.
Osteoblasts, Tissue Inhibitor of Metalloproteinase-1, Receptor, Transforming Growth Factor-beta Type I, Gene Expression, Protein Serine-Threonine Kinases, Rats, Rats, Sprague-Dawley, Transforming Growth Factor beta1, Transforming Growth Factor beta2, Transforming Growth Factor beta3, Transforming Growth Factor beta, Animals, Collagen, RNA, Messenger, Hypoxia, Activin Receptors, Type I, Receptors, Transforming Growth Factor beta, Cells, Cultured
Osteoblasts, Tissue Inhibitor of Metalloproteinase-1, Receptor, Transforming Growth Factor-beta Type I, Gene Expression, Protein Serine-Threonine Kinases, Rats, Rats, Sprague-Dawley, Transforming Growth Factor beta1, Transforming Growth Factor beta2, Transforming Growth Factor beta3, Transforming Growth Factor beta, Animals, Collagen, RNA, Messenger, Hypoxia, Activin Receptors, Type I, Receptors, Transforming Growth Factor beta, Cells, Cultured
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 74 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
