Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Surgical ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Surgical Research
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Hypoxia Regulates Osteoblast Gene Expression

Authors: S M, Warren; D S, Steinbrech; B J, Mehrara; P B, Saadeh; J A, Greenwald; J A, Spector; P J, Bouletreau; +1 Authors

Hypoxia Regulates Osteoblast Gene Expression

Abstract

Vascular disruption secondary to fracture creates a hypoxic gradient of injury wherein the oxygen tension at the center of the wound is very low. In vivo this hypoxic microenvironment stimulates the expression of a variety of cytokines from inflammatory cells, fibroblasts, endothelial cells, and osteoblasts. In order to begin to dissect this complex system, we have examined the effects of hypoxia on isolated osteoblast gene expression in vitro. Understanding gene expression in this system may facilitate the development of targeted therapeutic modalities designed to accelerate fracture repair and reduce complications. Using an established model of in vitro hypoxia, we have analyzed the expression of genes involved in bone matrix production and turnover. Subconfluent neonatal rat calvarial osteoblasts were exposed to hypoxia (pO(2) = 35-40 mm Hg) and total cellular RNA was collected at 0, 3, 6, 24, and 48 h. Northern analysis was used to analyze the expression patterns of (1) transforming growth factors (TGFs)-beta1, -beta2, and -beta3 and their type I receptor; (2) collagens I and III; and (3) tissue inhibitor of metalloproteinase-1. We have demonstrated a marked elevation of TGF-beta1 gene expression within 3 h of hypoxia. Although neither TGF-beta2 nor TGF-beta3 expression was affected by hypoxia, the TGF-beta type I receptor was substantially upregulated within 6 h. In addition, extracellular matrix scaffolding molecules (collagens I and III) were markedly, but differentially, upregulated. Finally, we have demonstrated that the expression of an inhibitor of extracellular matrix turnover, the tissue inhibitor of metalloproteinase-1, was strikingly decreased in response to hypoxia. These results imply that hypoxia can affect osseous healing by altering the expression of cytokines, bone-specific extracellular matrix molecules, and their regulators.

Related Organizations
Keywords

Osteoblasts, Tissue Inhibitor of Metalloproteinase-1, Receptor, Transforming Growth Factor-beta Type I, Gene Expression, Protein Serine-Threonine Kinases, Rats, Rats, Sprague-Dawley, Transforming Growth Factor beta1, Transforming Growth Factor beta2, Transforming Growth Factor beta3, Transforming Growth Factor beta, Animals, Collagen, RNA, Messenger, Hypoxia, Activin Receptors, Type I, Receptors, Transforming Growth Factor beta, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!