Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular and Cellular Cardiology
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

IKr: The hERG Channel

Authors: G N, Tseng;

IKr: The hERG Channel

Abstract

G.-N. Tseng. I(Kr): The hERG Channel. Journal of Molecular and Cellular Cardiology (2001) 33, 835-849. The rapid delayed rectifier (I(Kr)) channel is important for cardiac action potential repolarization. Suppressing I(Kr)function, due to either genetic defects in its pore-forming subunit (hERG) or adverse drug effects, can lead to long-QT (LQT) syndrome that carries increased risk of life-threatening arrhythmias. The implication of I(Kr)in cardiac arrhythmias and in anti-arrhythmic/pro-arrhythmic actions of drugs has driven intensive research interests in its structure-function relationship, the linkage between LQT-associated mutations and changes in channel function, and the mechanism of drug actions. This review will cover the following topics: (1) heterogeneous contribution of I(Kr)to action potential repolarization in the heart, (2) structure-function relationship of I(Kr)/hERG channels, (3) role of regulatory & bgr; subunits in I(Kr)/hERG channel function, (4) structural basis for the unique pharmacological properties of I(Kr)/hERG channels, and (5) I(Kr)/hERG channel modulation by changes in cellular milieu under physiological and pathological conditions of the heart. It is anticipated that further advances in our understanding of I(Kr)/hERG, particularly in the areas of roles of different (& agr; and & bgr;) subunits in native I(Kr)function, alterations in I(Kr)function in diseased hearts, and the 3-dimensional structure of the I(Kr)/hERG pore based on homology modeling using the KcsA model, will help us better define the role of I(Kr)in arrhythmias and design therapeutic agents that can increase I(Kr)and are useful for LQT syndrome.

Related Organizations
Keywords

Ions, ERG1 Potassium Channel, Potassium Channels, Sequence Homology, Amino Acid, Myocardium, Molecular Sequence Data, Action Potentials, Arrhythmias, Cardiac, Heart, Ether-A-Go-Go Potassium Channels, DNA-Binding Proteins, Alternative Splicing, Structure-Activity Relationship, Potassium Channels, Voltage-Gated, Mutation, Potassium, Animals, Humans, Amino Acid Sequence, Cation Transport Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    169
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
169
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!