
pmid: 10900170
Understanding the process of Ca(2+)/Mg(2+)exchange during muscle excitation and relaxation is fundamental to elucidating the mechanism of Ca(2+)-regulated muscle contraction. During the resting phase, the C-domain of cardiac troponin C may be occupied by either Ca(2+)or Mg(2+). Here, complexes of recombinant cardiac troponin C(81-161) and the N terminus of cardiac troponin I, representing residues 33-80, were generated in the presence of saturating Mg(2+). Heteronuclear multi-dimensional nuclear magnetic resonance experiments were used to obtain backbone assignments of the Mg(2+)-loaded complex. In the presence of cardiac troponin I, the affinity of site IV for Mg(2+)is increased. Comparison of Mg(2+)and Ca(2+)-loaded complexes reveals that chemical shift differences are primarily localized to metal-binding sites III and IV, defining positions within these sites that have distinct Ca(2+)/Mg(2+)conformations. The observed transition from the Mg(2+)-loaded to Ca(2+)-loaded form demonstrates that sites III and IV fill simultaneously with Ca(2+)displacing Mg(2+). However, even in the absence of excess Ca(2+), Mg(2+)does not readily displace Ca(2+)in the isolated binary complex. Thus, the Mg(2+)-loaded conformer may only represent a small fraction of the total cardiac troponin C found in the sarcomere.
Binding Sites, Magnetic Resonance Spectroscopy, Myocardium, Troponin I, Ligands, Antiporters, Recombinant Proteins, Protein Structure, Tertiary, Calcium, Electrophoresis, Polyacrylamide Gel, Magnesium, Troponin C, Cation Transport Proteins, Protein Binding
Binding Sites, Magnetic Resonance Spectroscopy, Myocardium, Troponin I, Ligands, Antiporters, Recombinant Proteins, Protein Structure, Tertiary, Calcium, Electrophoresis, Polyacrylamide Gel, Magnesium, Troponin C, Cation Transport Proteins, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
