Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Alternative conformations of a nucleic acid four-way junction

Authors: J, Nowakowski; P J, Shim; C D, Stout; G F, Joyce;

Alternative conformations of a nucleic acid four-way junction

Abstract

A crystal structure of a 108 nucleotide RNA-DNA complex containing a four-way junction was solved at 3.1 A resolution. The structure of the junction differs substantially from the "stacked-X" conformation observed previously, due to a 135 degrees rotation of the branches. Comparison of the two conformers provides insight into the factors contributing to the flexibility of four-way junctions. The stacked-X conformation maximizes base-stacking but causes unfavorable repulsion between phosphate groups, whereas the 135 degrees -rotated "crossed" conformation minimizes electrostatic clashes at the expense of reduced base-stacking. Despite the large rotation of the branches, both junction structures exhibit an antiparallel arrangement of the continuous strands and opposite polarity of the crossover strands.

Related Organizations
Keywords

Models, Molecular, Base Sequence, Rotation, Molecular Sequence Data, Static Electricity, Nucleic Acid Heteroduplexes, DNA, Single-Stranded, DNA, DNA, Catalytic, Crystallography, X-Ray, Phosphates, Isomerism, Nucleic Acid Conformation, RNA, Crossing Over, Genetic, Pliability, Base Pairing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!