Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DNA Cleavage by the Type IC Restriction-Modification EnzymeEcoR124II

Authors: J, Dreier; M P, MacWilliams; T A, Bickle;

DNA Cleavage by the Type IC Restriction-Modification EnzymeEcoR124II

Abstract

Type I restriction-modification systems bind to non-palindromic, bipartite recognition sequences. Although these enzymes methylate specific adenine residues within their recognition sequences, they cut DNA at sites up to several thousand base-pairs away. We have investigated the mechanism of how EcoR124II, a type IC restriction-modification system, selects the cleavage site. Restriction studies with different DNA constructs revealed that circular DNA requires only one non-methylated recognition sequence to be cut, whereas linear DNA needs at least two such sites. Cleavage of linear DNA is independent of site orientation. Further investigations of the linear substrates revealed a mechanism whereby the double-strand break is introduced between two recognition sequences. We propose a model for the selection of restriction sites by type I enzymes where two EcoR124II complexes bind to two recognition sequences. Lack of methylation at a site stimulates the enzyme to translocate DNA on both sides of the recognition sequence. Thus the two complexes approach each other and, at the point where they meet, they interact to introduce a double-strand break in the DNA.

Related Organizations
Keywords

Site-Specific DNA-Methyltransferase (Adenine-Specific), Operator Regions, Genetic, Base Sequence, DNA, Methylation, Repressor Proteins, Lac Operon, Models, Chemical, DNA Restriction-Modification Enzymes, DNA, Circular, Plasmids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!