Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Colloid a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Colloid and Interface Science
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Magneto-optics of Ferritin

Authors: M. Pankowska; Andrzej Dobek; Jacek Gapiński;

Magneto-optics of Ferritin

Abstract

Measurements of Rayleigh light scattering, nonlinear light scattering in DC magnetic fields, and the Cotton-Mouton effect were carried out for 15 mM NaCl and water solutions of ferritin at room temperature. The spherical geometry of the molecule implies that it is optically isotropic. Such a macromolecule should not manifest magnetic anisotropy; however, in solution it shows induced magnetic birefringence (Cotton-Mouton effect) and changes in the intensity of the scattered light components. The analysis of the obtained results indicates the deformation of linear optical polarizability induced in the ferritin by a magnetic field as the main source of the magneto-optical phenomena observed. Light scattering and the CM effects theoretically depend on the linear magneto-optical polarizability, chi, and the nonlinear magneto-optical polarizability, eta. Using the theory describing the phenomena as well as the experimental data, the values of the anisotropy of linear magneto-optical polarizability components, chi(parallel) - chi(perpendicular) = -(1.3 +/- 0.7) x 10(-22) [cm3] (in SI units chi(parallel) - chi(perpendicular) = -(2.0 +/- 1.2) x 10(-33) [m3]), the linear optical polarizability, alpha = (alpha(parallel) + 2alpha(perpendicular))/3 = (3.9 +/- 1.0) x 10(-20) [cm3] (in SI units alpha = (3.52 +/- 0.09)x10(-4) [Cm2 V(-1)]), and its anisotropy, kappa(alpha) = (alpha(parallel) - alpha(perpendicular))/3alpha = -(0.06+/-0.03), nonlinear magneto-optical polarizability, eta = (eta(parallel) + 2eta(perpendicular))/3 = -(4.7 +/- 0.9) x 10(-30) [cm3 Oe(-2)] (in SI units eta = -(6.7 +/- 1.3) x 10(-18) [Cm4 V(-1) A(-2)]) and its anisotropy, kappa(eta) = (eta[parallel) - eta(perpendicular))/3eta = -(0.15 +/- 0.10), were deduced. Here alpha(parallel), eta(parallel), alpha(perpendicular), eta(perpendicular) are the optical and magneto-optical polarizability components along the parallel and the perpendicular axes of the axially symmetric molecule, respectively.

Related Organizations
Keywords

Magnetics, Light, Ferritins, Animals, Scattering, Radiation, Horses, Models, Theoretical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!