Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Colloid and Interface Science
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Surface Properties of Vitreous Fibers

Authors: OTTAVIANI M.; TOMATIS, Maura; FUBINI, Bice;

Surface Properties of Vitreous Fibers

Abstract

The surface properties of various vitreous fibers, suspected to be toxic to humans and animals, were investigated by means of paramagnetic labels covalently linked to the surface. Computer-aided analysis of the electron paramagnetic resonance (EPR) spectra provided structural and dynamic information on the label and its environment. Calorimetric measurements provided information on the hydration mechanism. The results were analyzed in terms of (a) different polarity and interaction abilities of surface regions, (b) presence of ions at the surface, (c) silica contents, (d) vicinity of the interacting sites, (e) fiber dimension and morphology of the surfaces, and (f) water hydration. The mobility of the labels decreased due to interaction of the fibers with ions or ionic and polar groups at the surface. Close interacting sites were identified on the basis of spin-spin effects and were distinguished and quantified in strongly and weakly interacting sites. The spin-labeling technique indicated decreased ability of the surface to interact with decreased silicon concentration and in the presence of contaminants at the surface. The interaction with water revealed in all cases a substantial heterogeneity in hydrophilicity of surface sites. The labels were not easily hydrated. Vitreous fibers of various compositions adsorbed much more water than crystalline or amorphous silica; water coordinated to surface cations played a major role in the overall adsorption. The surface reaction mechanisms were the same on fibers of different compositions, but the surface composition affected the extent of adsorption. Glass wool exhibited a much higher adsorption capacity than rock wool under the same experimental conditions. In conclusion, the combination of EPR and calorimetric measurements provided insight into the surface properties of silica-based fibers. Copyright 2000 Academic Press.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Green