Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Graphical Modelsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Graphical Models
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Graphical Models
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Hyperbolic Hausdorff Distance for Medial Axis Transform

Hyperbolic Hausdorff distance for medial axis transform
Authors: Sung Woo Choi; Hans-Peter Seidel;

Hyperbolic Hausdorff Distance for Medial Axis Transform

Abstract

Summary: Although the Hausdorff distance is a popular device to measure the differences between sets, it is not natural for some specific classes of sets, especially for the medial axis transform which is defined as the set of all pairs of the centers and the radii of the maximal balls contained in another set. In spite of its many advantages and possible applications, the medial axis transform has one great weakness, namely its instability under the Hausdorff distance when the boundary of the original set is perturbed. Though many attempts have been made for the resolution of this phenomenon, most of them are heuristic in nature and lack precise error analysis. In this paper, we show that this instability can be remedied by introducing a new metric called the hyperbolic Hausdorff distance, which is most natural for measuring the differences between medial axis transforms. Using the hyperbolic Hausdorff distance, we obtain error bounds, which make the operation of medial axis transform almost an isometry. By various examples, we also show that the bounds obtained are sharp. In doing so, we show that bounding both the Hausdorff distance between domains and the Hausdorff distance between their boundaries is necessary and sufficient for bounding the hyperbolic Hausdorff distance between their medial axis transforms. These results drastically improve the previous results and open a new way to practically control the Hausdorff distance error of the domains under its medial axis transform error, and vice versa.

Related Organizations
Keywords

Hausdorff distance, isometry, Computer graphics; computational geometry (digital and algorithmic aspects), hyperbolic Hausdorff distance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Average
gold