
pmid: 10938631
Restriction-modification (RM) systems are cognate gene complexes that code for an endonuclease and a methylase. They are often thought to have developed in bacteria as protection against invading genetic material, e.g., phage DNA. The high diversity of RM systems, as observed in nature, is often ascribed to the coevolution of RM systems (which 'invent' novel types) and phages. However, the extent to which phages are insensitive to RM systems casts doubts on the effectiveness of RM systems as protection against infection and thereby on the reason for the diversity of RM systems. We present an eco-evolutionary model in order to study the evolution of the diversity of RM systems. The model predicts that in general diversity of RM systems is high. More importantly, the diversity of the RM systems is expressed either at the individual level or at the population level. In the first case all individuals carry RM systems of all sequence specificities, whereas in the second case they carry only one RM system or no RM systems at all. Nevertheless, in the second case the same number of sequence specificities are present in the population.
cell division, Bacteria, Genetic Variation, Biological Evolution, Models, Biological, tillering, leaf growth, ethylene, meristems, Bacteriophages, Computer Simulation, DNA Restriction-Modification Enzymes, Biologie, cell expansion
cell division, Bacteria, Genetic Variation, Biological Evolution, Models, Biological, tillering, leaf growth, ethylene, meristems, Bacteriophages, Computer Simulation, DNA Restriction-Modification Enzymes, Biologie, cell expansion
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
