Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction of Protein Subcellular Locations by Incorporating Quasi-Sequence-Order Effect

Authors: K C, Chou;

Prediction of Protein Subcellular Locations by Incorporating Quasi-Sequence-Order Effect

Abstract

How to incorporate the sequence order effect is a key and logical step for improving the prediction quality of protein subcellular location, but meanwhile it is a very difficult problem as well. This is because the number of possible sequence order patterns in proteins is extremely large, which has posed a formidable barrier to construct an effective training data set for statistical treatment based on the current knowledge. That is why most of the existing prediction algorithms are operated based on the amino-acid composition alone. In this paper, based on the physicochemical distance between amino acids, a set of sequence-order-coupling numbers was introduced to reflect the sequence order effect, or in a rigorous term, the quasi-sequence-order effect. Furthermore, the covariant discriminant algorithm by Chou and Elrod (Protein Eng. 12, 107-118, 1999) developed recently was augmented to allow the prediction performed by using the input of both the sequence-order-coupling numbers and amino-acid composition. A remarkable improvement was observed in the prediction quality using the augmented covariant discriminant algorithm. The approach described here represents one promising step forward in the efforts of incorporating sequence order effect in protein subcellular location prediction. It is anticipated that the current approach may also have a series of impacts on the prediction of other protein features by statistical approaches.

Keywords

Proteins, Algorithms, Subcellular Fractions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    327
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
327
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!