Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Usiena air - Univers...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

Permeability of Liver Microsomal Membranes to Glucose

Authors: MARCOLONGO, P.; FULCERI, R.; GIUNTI, R.; BURCHELL, A.; BENEDETTI, A.;

Permeability of Liver Microsomal Membranes to Glucose

Abstract

The permeability of rat liver microsomes to glucose has been studied by using (14)C-labelled D-glucose and a light-scattering technique. 1) The microsomal intravesicular apparent isotope space for D-glucose (1mM; after 5 min incubation at 22 degrees C) was 2.34 microl/mg protein, i.e., approximately 72% of the apparent water space. 2) Efflux of [(14)C]D-glucose from microsomal vesicles pre-loaded as in 1) and measured by rapid Millipore filtration after dilution (100 fold) in a glucose-free medium revealed that 15 sec after dilution only 15% of intravesicular glucose was still retained by microsomes. 3) Osmotic behaviour of microsomes upon addition of D-glucose measured by a light-scattering technique revealed a glucose influx, saturable at [D-glucose] > 100 mM, and (partially) inhibited by pentamidine and cytochalasin B. Ascorbic acid, L-glucose and other monosaccharides and related compounds also permeated liver microsomes in a fashion similar to D-glucose. These data indicate the existence of a facilitative transport system(s) for glucose in the membrane of liver endoplasmic reticulum vesicles.

Country
Italy
Related Organizations
Keywords

Intracellular Fluid, Male, Radioisotope Dilution Technique, Cytochalasin B, Monosaccharides, Ascorbic Acid, Intracellular Membranes, 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid, Tritium, Permeability, Rats, Rats, Sprague-Dawley, Kinetics, Glucose, Body Water, Microsomes, Liver, Animals, Insulin, Carbon Radioisotopes, Pentamidine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!