Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Biochemistry and Biophysics
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Functional Characterization of the Carnitine Transporter Defective in Primary Carnitine Deficiency

Authors: F, Scaglia; Y, Wang; N, Longo;

Functional Characterization of the Carnitine Transporter Defective in Primary Carnitine Deficiency

Abstract

Primary carnitine deficiency is an autosomal recessive disorder caused by defective carnitine transport which impairs fatty acid oxidation and manifests as nonketotic hypoglycemia or skeletal or heart myopathy. Here we report the functional characterization of this transporter in human fibroblasts. Carnitine enters normal cells by saturable and unsaturable routes, the latter corresponding to Na+-independent uptake. Saturable carnitine transport was absent in cells from patients with primary carnitine deficiency. In control cells, saturable carnitine transport was energized by the electrochemical gradient of Na+. Carnitine uptake was not inhibited by amino acid substrates of transport systems A, ASC, and X-AG, but was inhibited competitively (in potency order) by butyrobetaine > carnitine > palmitoylcarnitine = acetylcarnitine > betaine. Carnitine uptake was also noncompetitively inhibited by verapamil and quinidine, inhibitors of the multidrug resistance family of membrane transporters, suggesting that the carnitine transporter may share a functional motif with this class of transporters. A high-affinity carnitine transporter was present in kidney 293 cells, but not in HepG2 liver cells, whose carnitine transporter had a Km in the millimolar range. These result indicate the presence of multiple types of carnitine transporters in human cells.

Related Organizations
Keywords

Organic Cation Transport Proteins, Sodium, Palmitoylcarnitine, Biological Transport, Fibroblasts, Kidney, Binding, Competitive, Membrane Potentials, Betaine, Liver, Carnitine, Potassium, Humans, Acetylcarnitine, Carrier Proteins, Solute Carrier Family 22 Member 5, Anti-Arrhythmia Agents, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!