Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Yeastarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Yeast
Article . 1987 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Yeast
Article . 1989
versions View all 3 versions
addClaim

Proliferation of microbodies in Saccharomyces cerevisiae

Authors: VEENHUIS, M; MATEBLOWSKI, M; KUNAU, WH; HARDER, W;

Proliferation of microbodies in Saccharomyces cerevisiae

Abstract

AbstractThe development of microbodies in the yeast Saccharomyces cerevisiae was studied in response to different conditions of growth. Various strains of S. cerevisiae were investigated, using cells from the exponential growth phase on glucose as an inocullum in all transfer experiments. Electron microscopy, including serial sectioning, revealed that these cells generally contained one to four small microbodies which were localized in the vicinity of the cell wall and characterized by the presence of catalase. Transfer of these glucose‐grown cells into media supplemented with various compounds known to induce microbody proliferation in other yeasts—i.e. uric acid, alkylated amines, amino acids, C2‐compounds such as ethanol or acetate, in the presence or absence of compounds that induce oxygen radical formation—did not result in a significant change in the number of microbody profiles observed. Marked microbody proliferation was, however, observed after a shift of cells into media containing oleic acid and was associated with the induction of activities of β‐oxidation enzymes. In addition, catalase and isocitrate lyase were present in enhanced levels. Kinetic experiments suggested that these microbodies developed from those originally present in the inoculum cells. In thin sections up to 14 microbody profiles were occasionally observed, often present in small clusters. Their ultimate volume fraction amounted to 8–10% of the cytoplasmic volume.

Country
Netherlands
Related Organizations
Keywords

Microscopy, Electron, Freeze Etching, Saccharomyces cerevisiae, Catalase, Immunohistochemistry, Microbodies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    296
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
296
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!