
AbstractGenerating needed cell types using cellular reprogramming is a promising strategy for restoring tissue function in injury or disease. A common method for reprogramming is addition of one or more transcription factors that confer a new function or identity. Advancements in transcription factor selection and delivery have culminated in successful grafting of autologous reprogrammed cells, an early demonstration of their clinical utility. Though cellular reprogramming has been successful in a number of settings, identification of appropriate transcription factors for a particular transformation has been challenging. Computational methods enable more sophisticated prediction of relevant transcription factors for reprogramming by leveraging gene expression data of initial and target cell types, and are built on mathematical frameworks ranging from information theory to control theory. This review highlights the utility and impact of these mathematical frameworks in the field of cellular reprogramming.This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Stem Cells and Development Reproductive System Diseases > Computational Models
Medicine (General), Health Sciences, Reprogramming, Control Theory, Transcription Factors
Medicine (General), Health Sciences, Reprogramming, Control Theory, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
