Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao WIREs Mechanisms of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
WIREs Mechanisms of Disease
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

The shifting shape and functional specializations of the cell cycle during lineage development

Authors: Yung Hwang; Daniel Hidalgo; Merav Socolovsky;

The shifting shape and functional specializations of the cell cycle during lineage development

Abstract

AbstractEssentially all cell cycling in multicellular organisms in vivo takes place in the context of lineage differentiation. This notwithstanding, the regulation of the cell cycle is often assumed to be generic, independent of tissue or developmental stage. Here we review developmental‐stage‐specific cell cycle adaptations that may influence developmental decisions, in mammalian erythropoiesis and in other lineages. The length of the cell cycle influences the balance between self‐renewal and differentiation in multiple tissues, and may determine lineage fate. Shorter cycles contribute to the efficiency of reprogramming somatic cells into induced pluripotency stem cells and help maintain the pluripotent state. While the plasticity of G1 length is well established, the speed of S phase is emerging as a novel regulated parameter that may influence cell fate transitions in the erythroid lineage, in neural tissue and in embryonic stem cells. A slow S phase may stabilize the self‐renewal state, whereas S phase shortening may favor a cell fate change. In the erythroid lineage, functional approaches and single‐cell RNA‐sequencing show that a key transcriptional switch, at the transition from self‐renewal to differentiation, is synchronized with and dependent on S phase. This specific S phase is shorter, as a result of a genome‐wide increase in the speed of replication forks. Furthermore, there is progressive shortening in G1 in the period preceding this switch. Together these studies suggest an integrated regulatory landscape of the cycle and differentiation programs, where cell cycle adaptations are controlled by, and in turn feed back on, the propagation of developmental trajectories.This article is categorized under: Congenital Diseases > Stem Cells and Development

Country
United States
Keywords

Cell Cycle, Animals, cell cycle, Cell Differentiation, single-cell RNA-sequencing, hematopoiesis, erythropoiesis, Cell Division, Embryonic Stem Cells, S Phase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!