<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractRibonucleic acid (RNA) editing is a mechanism that generates RNA and protein diversity, which is not directly encoded in the genome. The most common type of RNA editing in vertebrates is the conversion of adenosine to inosine in double‐stranded RNA which occurs in the higher eukaryotes. This editing is carried out by the family of adenosine deaminase acting on RNA (ADAR) proteins. The most‐studied substrates of ADAR proteins undergo editing which is very consistent, highly conserved, and functionally important. However, editing causes changes in protein‐coding regions only at a small proportion of all editing sites. The vast majority of editing sites are in noncoding sequences. This includes microRNAs, as well as the introns and 3′ untranslated regions of messenger RNAs, which play important roles in the RNA‐mediated regulation of gene expression. Copyright © 2009 John Wiley & Sons, Inc.This article is categorized under: Biological Mechanisms > Regulatory Biology Laboratory Methods and Technologies > RNA Methods
Adenosine, RNA, Untranslated, Adenosine Deaminase, Systems Biology, Proteins, Immunity, Innate, Inosine, Substrate Specificity, Evolution, Molecular, MicroRNAs, Animals, Humans, RNA Interference, RNA Editing
Adenosine, RNA, Untranslated, Adenosine Deaminase, Systems Biology, Proteins, Immunity, Innate, Inosine, Substrate Specificity, Evolution, Molecular, MicroRNAs, Animals, Humans, RNA Interference, RNA Editing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 92 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |