
AbstractMalaria is one of the most severe infectious diseases affecting humans and it is caused by protozoan pathogens of the species Plasmodium (spp.). The malaria parasite Plasmodium is characterized by a complex, multistage life cycle that requires tight gene regulation which allows for host invasion and defense against host immune responses. Unfortunately, the mechanisms regulating gene expression during Plasmodium infection remain largely elusive, though several lines of evidence implicate a major involvement of non‐coding RNAs (ncRNAs). The ncRNAs have been found to play a key role in regulating transcriptional and post‐transcriptional events in a broad range of organisms including Plasmodium. In Plasmodium ncRNAs have been shown to regulate key events in the multistage life cycle and virulence ability. Here we review recent progress involving ncRNAs (microRNAs, long non‐coding RNAs, and circular RNAs) and their role as regulators of gene expression during Plasmodium infection in human hosts with focus on the possibility of using these molecules as biomarkers for monitoring disease status. We also discuss the surprising function of ncRNAs in mediating the complex interplay between parasite and human host and future perspectives of the field.This article is categorized under: RNA in Disease and Development > RNA in Disease
MicroRNAs, RNA, Untranslated, lncRNA, malaria, miRNA, ncRNA, Plasmodium, Gene Expression Regulation, Advanced Reviews, Humans, RNA, Long Noncoding, Malaria
MicroRNAs, RNA, Untranslated, lncRNA, malaria, miRNA, ncRNA, Plasmodium, Gene Expression Regulation, Advanced Reviews, Humans, RNA, Long Noncoding, Malaria
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
