Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wiley Interdisciplin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Wiley Interdisciplinary Reviews - RNA
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Cytoplasmic functions of long noncoding RNAs

Authors: Ji Heon, Noh; Kyoung Mi, Kim; Waverly G, McClusky; Kotb, Abdelmohsen; Myriam, Gorospe;

Cytoplasmic functions of long noncoding RNAs

Abstract

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides found throughout the cell that lack protein‐coding function. Their functions are closely linked to their interaction with RNA‐binding proteins (RBPs) and nucleic acids. Nuclear lncRNAs have been studied extensively, revealing complexes with structural and regulatory roles that enable gene organization and control transcription. Cytoplasmic lncRNAs are less well understood, but accumulating evidence indicates that they also form complexes with diverse structural and regulatory functions. Here, we review our current knowledge of cytoplasmic lncRNAs and the different levels of gene regulation controlled by cytoplasmic lncRNA complexes, including mRNA turnover, translation, protein stability, sponging of cytosolic factors, and modulation of signaling pathways. We conclude by discussing areas of future study needed to elucidate comprehensively the biology of lncRNAs, to further understand the impact of lncRNAs on physiology and design lncRNA‐centered therapeutic strategies.This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications

Keywords

Cytoplasm, Protein Stability, RNA Stability, Animals, Humans, RNA, Long Noncoding, RNA, Messenger, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    347
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
347
Top 0.1%
Top 1%
Top 0.1%
bronze